Calculating pH when given either [H₃O⁺] or [HO⁻]

If hydronium ion concentration is given, simply use calculator and take the negative log of [H₃O⁺]

[H₃O+] =
$$3.5 \times 10^{-3} M$$

-log (3.5 x 10⁻³)

$$pH = 2.5$$

If hydroxide ion concentration is given, First use Kw expression to calculate $[H_3O^+]$ and then take the negative log of $[H_3O^+]$

Given:
$$[HO^-] = 3.5 \times 10^{-3} M$$

First use Kw expression to determine [H₃O⁺]

$$Kw = [H_3O+][HO^-]$$

$$1.0 \times 10^{-14} = [H_3O+][HO^-]$$

$$1.0 \times 10^{-14} = [H_3O+] (3.5 \times 10^{-3})$$

Now rearrange and solve for $[H_3O^+]$

$$\frac{1.0 \times 10^{-14}}{(3.5 \times 10^{-3})} = [H_3O+] = 2.9 \times 10^{-12}$$

Finally, take $-\log$ of $[H_3O^+]$

$$-\log (2.9 \times 10^{-12})$$

$$pH = 11.5$$

There is a faster method:

Take the -log of [HO], this is called the pOH Use the Kw expression in log form and rearrange:

$$pOH = -log (3.5 \times 10^{-3} M) = 2.5$$

$$pOH = 2.5$$

$$Kw = [H_3O+][HO^-]$$

$$pKw = pH + pOH$$

$$14 = pH + 2.5$$

$$pH = 14 - 2.5 = 11.5$$

Calculating pH when strong acid or strong base concentration is given. Remember, strong electrolytes completely dissociate, thus the concentration of H_3O^{\dagger} or OH^{-} is equal to the starting concentration given in the problem.

Example: 0.15 M HCl gives H_3O^+ concentration of 0.15 M

Take the $-\log$ to get pH: $-\log$ (0.15) = 0.8

pH = 0.8

Example: 0.25 M KOH gives HO concentration of 0.25 M

Take the $-\log$ to get pOH: $-\log(0.25) = 0.6$

pOH = 0.6

pH = 14 – pOH

pH = 13.4